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Abstract
A new numerical integrator for a wide class of separable Hamiltonian systems
called the Stäckel system is presented. This integrator is designed so as to
conserve the same number of constants of motion as the degree of freedom
of the Stäckel system. Separation of variables of the Stäckel system is most
fundamental for the integrator. A combination of canonical transformations
and an energy-preserving method with a variable step-size plays a key role to
design such an integrator. Some typical and important examples of the Stäckel
system are then discretized explicitly. They are the three-dimensional Kepler
motion, the Holt system and the integrable Henon–Heiles system in celestial
mechanics.

PACS numbers: 02.60.Jh, 45.10.Db, 45.20.Jj
Mathematics Subject Classification: 37M99, 37J35, 70H06

1. Introduction

Many numerical integrators for dynamical systems have been studied in order to well
approximate the continuous-time orbits. To investigate the long-time behaviour, several
structured integrators are quite useful.

The symplectic integrators (cf [8, 26]) are numerical integration schemes for Hamiltonian
systems, which conserve the symplectic form in the phase space, so that the resulting discrete-
time evolution is regarded as a canonical transformation. Though the symplectic integrators
do not conserve Hamiltonian and other additional constants of motion, in general, they are
widely used in numerical simulation for various Hamiltonian systems. This is because the
symplectic integrators give a good approximation of orbits of the Hamiltonian system in the
sense in which they conserve a modified (or approximate) Hamiltonian.
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The energy-preserving method was presented by Greenspan [4, 5]. This method keeps
the value of discrete energy constant for any step-size. In particular, explicit energy-
preserving schemes were developed for Hamiltonian systems with at most quartic potential
in [13].

Recently, various integrators based on the discrete variational principle have been
designed. These integrators are classified into symplectic-momentum integrators and energy–
momentum integrators. Symplectic-momentum integrators [31, 33] for Lagrangian systems
keep a symplectic form and conserve a discrete momentum derived through a discrete
Noether theorem. An energy–momentum integrator for Lagrangian systems is designed
in [21]. Gonzalez presented energy–momentum integrators for Hamiltonian systems in [7].
Energy–momentum integrators keep the values of energy and discrete momenta. Regarding
a time variable as a coordinate, a symplectic-energy–momentum integrator was recently
presented in [14]. This integrator conserves the values of a discrete energy and a discrete
momentum, and keeps the symplectic form. The symplectic-momentum integrators and the
energy–momentum integrators preserve the values of modified constants of motion different
from the original ones. These modified constants are derived from a discrete Noether
theorem.

A Hamiltonian system with n degrees of freedom is said to be completely integrable if
it has n constants of motion in involution, which are functionally independent. This is the
context of Liouville–Arnold theorem [24]. However, some of such constants are not always
derived from a discrete Noether theorem. Hence, for the above integrators, it seems difficult
to simulate a long-term behaviour of such a completely integrable Hamiltonian system with
a sufficient accuracy. Actually, these integrators do not always give accurate behaviours of
the original integrable systems. For example [34, 35], the Runge–Lenz vector of the Kepler
motion is not conserved by a symplectic integrator. Therefore, the pericentre of the elliptic
orbit moves.

A set of n functionally independent constants of motion, which an n-dimensional
completely integrable Hamiltonian system preserves, fixes a single orbit on a phase space. It is
hopeful that an integrator is designed to conserve exactly n constants which an n-dimensional
completely integrable Hamiltonian system has.

An exact conservative integrator for the n-body problem including the Kepler problem
which conserves the Hamiltonian and the angular momentum is presented in [16]. Shadwick,
Bowman and Morrison [27] presented an integration scheme for the Kepler motion conserving
the Hamiltonian and the Runge–Lenz vector. However, the resulting integrator seems
to be numerically unstable for a large step-size. It has not been known for a long
time how to design an energy-preserving method which is stable and conserves all of
the additional constants of motion of a wide class of completely integrable Hamiltonian
systems.

Recently, the authors [22] presented the two-dimensional discrete Kepler motion by taking
the Levi-Civita regularization theory [1, 20, 28] together with an energy-preserving method
for the two-dimensional harmonic oscillator with a variable step-size. Then the original
Hamiltonian, the angular momentum and the Runge–Lenz vector are conserved exactly under
the time evolution of the discrete Kepler motion. Since all the constants of motion take
constant values, the orbit of the discrete Kepler motion correctly traces an ellipse, a parabola
or a hyperbola according to the initial value. In the second paper [23], the three-dimensional
Kepler motion is discretized by the same numerical integration scheme. The Kustaanheimo–
Stiefel (KS) regularization theory [17, 28] plays a central role in [23]. It is to be noted that
the two- and three-dimensional discrete Kepler motions found in [22, 23] are stable explicit
schemes and a variable step-size is easily introduced.
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The idea of applying the KS regularization technique to numerical calculation is not new.
Such a technique was already proposed in Bettis [2] in 1970. An exact integration scheme
for the Kepler motion based on an exact discretization of the harmonic oscillator and the KS
regularization transformation was given. The resulting scheme is shown to be numerically
stable. However, any explicit recurrence relation and any conservation of the constants of
motion were not discussed. The KS transformation and its application was also discussed in
[1, 32]. With the help of the transformation, a time-reversible integrator which conserves all
constants of motions of the Kepler motion has been derived by Leimkuhler [19] in 1999. A
transformation of the discrete time in [19], which is a discrete analogue of the Kepler change
of the time, is different from that in [22, 23]. Though this transformation guarantees the
time-reversibility, it makes the integrator implicit.

The new numerical integration scheme in [22, 23] is based on an energy-preserving
method and canonical transformations into separable Hamiltonian systems called the Levi-
Civita and KS transformation. The next challenging problem is to make clear the essence and
a coverage of the new scheme. The purpose of this paper is twofold. This paper shows that

(I) the new numerical integrator is applicable to a wide class of Hamiltonian systems called
the Stäckel system;

(II) separation of variables is essential to find such a numerical integrator that conserves the
same number of constants of motion as the degree of freedom of the Stäckel system.

The Stäckel system is known as the most general class of separable Hamiltonian systems
which includes the Liouville system [24]. The Stäckel system has the same number of
constants of motion as the degree of freedom. The main idea of this paper is to apply the
energy-preserving method with a variable step-size to Hamiltonian systems whose variables
can be separated by using certain canonical transformations. To this end, an extended phase
space [18, 29] is introduced, where a time variable and a minus Hamiltonian give a conjugate
pair of canonical variables. Then, a numerical integrator is designed which conserves the same
number of constants of motion as the degree of freedom of the Stäckel system. It is shown that
certain canonical transformations which separate canonical variables are quite useful as well
as the regularization transformations. We then illustrate our integrator by applying it to the
three-dimensional Kepler motion, the Holt system and an integrable Henon–Heiles system.
The Kepler motion and the Henon–Heiles system are important examples of the Stäckel system
which appear in celestial mechanics. An accurate numerical integrator is especially needed to
simulate long-time behaviours of solutions.

This paper is organized as follows. In section 2, a review of the basic properties of the
Stäckel system and its duality and canonical transformations is given. Typical and important
examples of the Stäckel system are the three-dimensional Kepler motion, the Holt system
and the integrable Henon–Heiles system. In section 3, it is shown that an energy-preserving
scheme for a Hamiltonian expressed by the sum of one-dimensional Hamiltonian systems
induces a numerical integrator which conserves the same number of constants of motion as
the degree of freedom of a given Stäckel system. An algorithm of the numerical integrator
is then described. In section 4, a three-dimensional discrete Kepler motion, a discrete Holt
system and a discrete integrable Henon–Heiles system are presented. Each of them keeps at
least the same number of constants of motion as its degree of freedom. A difference between
the discrete Kepler motion and the integrator in [19] is discussed. Numerical examples are
also given for the three-dimensional discrete Kepler motion, the discrete Holt system and the
discrete Henon–Heiles system. The orbits remarkably trace the orbits of the continuous-time
orbits for rather large discrete step-size.
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2. Stäckel system and related completely integrable systems

2.1. Stäckel system

Separation of variables is one of the fundamental methods for integrating equations of motions.
It enables us to reduce integration of a system with several degrees of freedom to integration of a
sequence of one-dimensional problems. The Stäckel system is an important class of separable
Hamiltonian systems having more than two degrees of freedom. Recently, Grigoryev and
Tsiganov [6] presented an implementation of the algorithm for finding the separation variables
for given integrable systems including Stäckel system. In this paper, we utilize separation of
variables to design a new numerical integration algorithm. There is a basic theorem (cf [24],
p 101) proposed by Stäckel in 1891.

Theorem 1 (Stäckel). Let H(p1, . . . , pN, q1, . . . , qN) be a Hamiltonian expressed as

H(p1, . . . , pN, q1, . . . , qN) =
N∑

j=1

gj (q1, . . . , qN)
(
p2

j + Uj(qj )
)
, (1)

where Uj(qj ), j = 1, . . . , N , are the potential functions. A system with the Hamiltonian (1)
admits a separation of variables of the corresponding Hamilton–Jacobi equation if and only
if there exists a nonsingular N × N matrix S = (si,j ) whose elements si,j depend only on qj

such that
N∑

j=1

si,j (qj )gj (q1, . . . , qN) = δi,1. (2)

The Hamiltonian system satisfying the property in theorem 1 is called the Stäckel system.
The Stäckel system covers a wider class of completely integrable dynamical systems than the
Liouville system. The matrix S is sometimes called the Stäckel matrix. It is to be noted that
the first column of the inverse S−1 = (ci,j ) is expressed as

ci,1 = gi(q1, . . . , qN), i = 1, . . . , N. (3)

If gi = gj , i �= j , then the Stäckel system is reduced to the Liouville system. Let us define
the quantities Ik = Ik(p1, . . . , pN, q1, . . . , qN), k = 1, . . . , N , byI1

...

IN

 = (S−1)�

 p2
1 + U1(q1)

...

p2
N + UN(qN)

 . (4)

Proposition 1 (cf [24]). The Stäckel system with the Hamiltonian (1) has the same number of
constants of motion as the degree of freedom. The quantities Ik are constants of motion of the
Hamiltonian system in involution. Especially, I1 is just the Hamiltonian I1 = H .

Thus, the Stäckel systems are completely integrable Hamiltonian systems in the sense of
Liouville–Arnold.

2.2. Canonical transformations between Stäckel systems

Let H = H(p1, . . . , pN, q1, . . . , qN) be a Hamiltonian on the 2N -dimensional phase space
M with the canonical coordinates {pj , qj }j=1,...,N . We extend M by adding to it the new
coordinate qN+1 = t and the corresponding momentum pN+1 = −H . The resulting (2N + 2)-
dimensional space ME is the so-called extended phase space of the Hamiltonian system
[18, 29]. The energy E is an arbitrary fixed value of the variable H in (1).
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To describe time evolution on the extended phase space ME , we introduce the extended
Hamiltonian

H(p1, . . . , pN+1, q1, . . . , qN+1) = H(p1, . . . , pN, q1, . . . , qN) − E. (5)

The Hamiltonian system for the variables pj , qj , j = 1, . . . , N ,

dpj

dt
= −∂H(p1, . . . , pN+1, q1, . . . , qN+1)

∂qj

,

dqj

dt
= ∂H(p1, . . . , pN+1, q1, . . . , qN+1)

∂pj

,

(6)

coincides with the Hamiltonian system given by the original Hamiltonian H. The time variable
qN+1 = t is a cyclic coordinate and the conjugated momentum pN+1 = −E is a constant of
motion. Because of pN+1 = −E,

H(p1, . . . , pN+1, q1, . . . , qN+1) ≡ 0. (7)

Namely, H is identically equal to zero for any t. In this paper, we call (7) a zero Hamiltonian
condition.

Let us introduce a general extended canonical transformation

{p1, . . . , pN, pN+1, q1, . . . , qN , qN+1} �→ {p1, . . . , pN, p̃N+1, q1, . . . , qN , q̃N+1},
pN+1 = −E, p̃N+1 = −Ẽ, qN+1 = t, q̃N+1 = t̃

(8)

on the extended phase space ME such that

E �→ Ẽ, Ẽ = E

v(p1, . . . , pN, q1, . . . qN)
,

t �→ t̃ , d̃t = v(p1, . . . , pN, q1, . . . qN) dt,

(9)

where v(p1, . . . , pN, q1, . . . , qN) is a nonzero function on the phase space M. The
transformation (8) changes the original Hamiltonian system (6) on M to

dpj

d̃t
= − 1

v(p1, . . . , pN, q1, . . . , qN)

∂H
∂qj

,

dqj

d̃t
= 1

v(p1, . . . , pN, q1, . . . , qN)

∂H
∂pj

,

(10)

but conserves the form of the Hamiltonian system on the extended phase space ME because
of condition (7)

dpj

d̃t
= −∂H̃(p1, . . . , pN, p̃N+1, q1, . . . , qN , q̃N+1)

∂qj

,

dqj

d̃t
= ∂H̃(p1, . . . , pN, p̃N+1, q1, . . . , qN , q̃N+1)

∂pj

, j = 1, 2, . . . , N,

(11)

where

H̃(p1, . . . , pN, p̃N+1, q1, . . . , qN , q̃N+1) = H(p1, . . . pN+1, q1, . . . qN+1)

v(p1, . . . , pN, q1, . . . , qN)
(12)

is a dual Hamiltonian of H(p1, . . . pN+1, q1, . . . qN+1).
If the Hamiltonian H̃(p1, . . . pN+1, q1, . . . qN+1) has singularities, the Hamiltonian system

(6) has singularities. The behaviours of (6) in neighbourhoods of singularities are not
simulated without loss of information by using numerical integrators. This is why the function
v(p1, . . . , pN, q1, . . . , qN) should be selected on the phase space M so that the Hamiltonian
H(p1, . . . pN+1, q1, . . . qN+1) has no singularities.
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The extended canonical transformation (8) on ME transforms the given Hamiltonian
system (6) to (11). If (6) is a Stäckel system, then so is (11). Consequently, (8) is a canonical
transformation between two different Stäckel systems. We here restrict ourselves to this case.
Such a transformation is performed by using a function v = v(q1, . . . , qN) which does not
depend on p1, . . . , pN .

Proposition 2 (Tsiganov [29]). If the two Stäckel matrices S and S̃ are distinguished by the
first row only, namely,

sk,j = s̃k,j , k �= 1, (13)

the corresponding Hamiltonians I1 and Ĩ1 with a common set of potentials Uj(qj ) are mutually
related by the following extended canonical transformation on the extended phase space ME :

I1 = H(p1, . . . , pN, q1, . . . , qN)

�→ Ĩ1 = H̃ (p1, . . . , pN, q1, . . . , qN) = I1

v(q1, . . . , qN)
,

dt �→ d̃t = v(q1, . . . , qN) dt,

(14)

where v(q1, . . . , qN) is given by a ratio of determinants of the Stäckel matrices

v(q1, . . . , qN) = det S̃(q1, . . . , qN)

det S(q1, . . . , qN)
. (15)

The extended Hamiltonian H(p1, . . . , pN, pN+1, q1, . . . , qN , qN+1) satisfying condition
(7) is transformed to H̃(p1, . . . , pN, p̃N+1, q1, . . . , qN , q̃N+1), a dual Hamiltonian, satisfying

H̃(p1, . . . , pN, p̃N+1, q1, . . . , qN , q̃N+1) ≡ 0. (16)

From (5), (9) and (14) we obtain

H̃(p1, . . . , pN, p̃N+1, q1, . . . , qN , q̃N+1) = H̃ (p1, . . . , pN, q1, . . . , qN) − Ẽ ≡ 0. (17)

Let H̃ (p1, . . . , pN, q1, . . . , qN) be a Hamiltonian of a given Stäckel system. Theorem 1 with
(3) implies that there exists a dual Stäckel system having a Hamiltonian

I1 = H(p1, . . . , pN, q1, . . . , qN) =
N∑

k=1

ck,1
(
p2

k + Uk(qk)
)
, ck,1 = ∂ log det S

∂s1,k

. (18)

In the subsequent subsections we consider three Hamiltonian systems as important
examples of the Stäckel system [29, 30]. The canonical variables in Hamiltonians are separated
explicitly by certain extended canonical transformation of type (14).

2.3. Kepler motion in three-dimensional space as Stäckel system

We briefly review that the three-dimensional Kepler motion is an example of Stäckel systems.
Through the canonical transformation on M called the KS regularization transformation
[1, 17, 28]

x = q2
1 − q2

2 − q2
3 + q2

4 , y = 2(q1q2 − q3q4), z = 2(q1q3 + q2q4),

px = 1

2

p1q1 − p2q2 − p3q3 + p4q4

q2
1 + q2

2 + q2
3 + q2

4

, py = 1

2

p1q2 + p2q1 − p3q4 − p4q3

q2
1 + q2

2 + q2
3 + q2

4

,

pz = 1

2

p1q3 + p2q4 + p3q1 + p4q2

q2
1 + q2

2 + q2
3 + q2

4

, p1q4 − p2q3 + p3q2 − p4q1 = 0,

(19)
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the zero-valued extended Hamiltonian of the three-dimensional Kepler motion

Hkepl-1(px, py, pz,−Ekepl, x, y, z, t̃ ) = 1

2

(
p2

x + p2
y + p2

z

) − K2√
x2 + y2 + z2

− Ekepl ≡ 0 (20)

leads to the extended Hamiltonian

Hkepl-2(p1, p2, p3, p4,−Ekepl, q1, q2, q3, q4, t̃)

= 1

8

p2
1 + p2

2 + p2
3 + p2

4 + U(q1) + U(q2) + U(q3) + U(q4)

q2
1 + q2

2 + q2
3 + q2

4

≡ 0, (21)

where

U(qj ) = −8Ekeplq
2
j − 2K2, j = 1, . . . , 4, (22)

where t̃ is the time variable of the three-dimensional Kepler motion, K2 is a given positive
constant and Ekepl is the constant satisfying (20). We have some choices of (q1, q2, q3, q4)

corresponding to (x, y, z), since one of the variables q1, q2, q3, q4 is arbitrary. An example of
choice is shown in [1], p 57.

We see that the system with Hamiltonian (21) is the very Stäckel system. Four constants
of motion are given by

Ĩ1

Ĩ2

Ĩ3

Ĩ4

 = (̃
S−1

kepl

)�


p2

1 + U(q1)

p2
2 + U(q2)

p2
3 + U(q3)

p2
4 + U(q4)

 ,

Ĩ1 = Hkepl-2(p1, p2, p3, p4,−Ekepl, q1, q2, q3, q4, t̃),

(23)

where the corresponding Stäckel matrix S̃kepl is

S̃kepl =


8q2

1 8q2
2 8q2

3 8q2
4

1 −1 0 0
0 1 −1 0
0 0 1 −1

 . (24)

On the other hand, the four-dimensional harmonic oscillator is a Stäckel system, whose
Hamiltonian is the sum of one-dimensional Hamiltonian systems. The four-dimensional
oscillator has the Hamiltonian

Hosc(p1, p2, p3, p4,−Eosc, q1, q2, q3, q4, t) = 1
4

(
p2

1 + p2
2 + p2

3 + p2
4

) − 2K2 − Eosc,

Eosc = 2Ekepl
(
q2

1 + q2
2 + q2

3 + q2
4

)
,

(25)

where K2 is a given positive constant in (20). The time variable of the four-dimensional
oscillator is t. Hosc(p1, p2, p3, p4,−Eosc, q1, q2, q3, q4, t) satisfies the zero Hamiltonian
condition because of

Hosc(p1, p2, p3, p4,−Eosc, q1, q2, q3, q4, t)

= 2
(
q2

1 + q2
2 + q2

3 + q2
4

)
Hkepl-2(p1, p2, p3, p4,−Ekepl, q1, q2, q3, q4, t̃) ≡ 0.

(26)
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The Hamiltonian system has four constants of motion Ik described by
I1

I2

I3

I4

 = (
S−1

kepl

)�


p2

1 + U(q1)

p2
2 + U(q2)

p2
3 + U(q3)

p2
4 + U(q4)

 ,

I1 = Hosc(p1, p2, p3, p4,−Eosc, q1, q2, q3, q4, t),

(27)

where the Stäckel matrix Skepl is given by

Skepl =


1 1 1 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

 . (28)

The two different dynamical systems (21) and (25) have a common set of potentials
U(qi), i = 1, . . . , 4, and correspond to the Stäckel matrices Skepl, S̃kepl, respectively,
which are different by the first row. Proposition 2 implies that Hosc(p1, p2, p3, p4,

−Eosc, q1, q2, q3, q4, t) and Hkepl-2(p1, p2, p3, p4,−Ekepl, q1, q2, q3, q4, t̃) are related by an
extended canonical transformation on ME . The result is as follows:

I1 = Hosc(p1, p2, p3, p4,−Eosc, q1, q2, q3, q4, t)

�→ Ĩ1 = Hkepl-2(p1, p2, p3, p4,−Ekepl, q1, q2, q3, q4, t̃) = I1

vkepl(q1, q2, q3, q4)

dt �→ d̃t = vkepl(q1, q2, q3, q4) dt,

(29)

where

vkepl(q1, q2, q3, q4) = det S̃kepl(q1, . . . , qN)

det Skepl(q1, . . . , qN)
= 2

(
q2

1 + q2
2 + q2

3 + q2
4

)
. (30)

We see that the zero-valued Hamiltonian (21) is equivalent to (26) through (29). Thus, the
three-dimensional Kepler motion and the four-dimensional harmonic oscillator are mutually
dual Stäckel systems. The transformation from the real time t̃ to the fictitious time t is
sometimes called the Kepler change of the time. Under the KS canonical transformation (19)
and the second canonical transformation (29), the Hamiltonian Hkepl-1 is regularized to Hosc

on the extended phase space ME . Simultaneously, the Kepler motion reduces to a sequence
of one-dimensional problems.

The Kepler motion with the zero-valued Hamiltonian (21) has three constants of motion
as follows:

(a) the Hamiltonian Hkepl-2(p1, p2, p3, p4,−Ekepl, q1, q2, q3, q4, t̃ );
(b) the angular momentum

hkepl(p1, p2, p3, p4, q1, q2, q3, q4) = 1

2

 2l4,1(p4, p1, q4, q1)

l1,3(p1, p3, q1, q3) − l2,4(p2, p4, q2, q4)

l1,2(p1, p2, q1, q2) + l3,4(p3, p4, q3, q4)

�

,

(31)

where

li,j (pi, pj , qi, qj ) = piqj − pjqi, i, j = 1, . . . , 4; (32)
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(c) the Runge–Lenz vector

ekepl(p1, p2, p3, p4, q1, q2, q3, q4)

= 1

4

32Ekepl
(
q2

1 − q2
2 − q2

3 − q2
4

) − 4
(
p2

1 − p2
2 − p2

3 + p2
4

)
8Ekepl(q1q3 + q2q4) − (p1p3 + p2p4)

8Ekepl(q1q2 − q3q4) − (p1p2 − p3p4)


�

. (33)

With the help of three independent constants of motion of the Hamiltonian (21) and the angular
momentum (31), the Kepler motion is shown to be completely integrable. The Runge–Lenz
vector (33) is an additional constant of motion which makes the Kepler motion super-integrable
(cf [15]). Consequently, any bounded orbits are closed and periodic.

The Hamiltonian (21) is expressed as a function of Ĩ 1 in (29). Moreover, it is easy to
check the conservation of angular momentum (31). By using Stäckel matrix, it is shown that
(33) are the function of the constants of motion Ĩ 1, Ĩ 2, Ĩ 3, Ĩ 4 and the angular momentum of
the harmonic oscillator l1,2, l1,3, l1,4, l2,4, l3,4. It is clear that the angular momentum (31) is a
vector-valued function of the quantities l1,2, l1,3, l1,4, l2,4, l3,4. The x, y and z components of
the Runge–Lenz vector, (ekepl)x, (ekepl)y and (ekepl)z, respectively, are given as follows:

(ekepl)x = −2Ĩ 2 + 2Ĩ 4,

(ekepl)y = − 1
4 sign(p1p3 − 8Ĩ 1q1q3)

√
(Ĩ 2 + 8K2)(−Ĩ 3 + Ĩ 4 + 8K2) + 8Ĩ 1l

2
1,3

− 1
4 sign(p2p4 − 8Ĩ 1q2q4)

√
(−Ĩ 4 + 8K2)(−Ĩ 2 + Ĩ 3 + 8K2) + 8Ĩ 1l

2
2,4, (34)

(ekepl)z = − 1
4 sign(p1p2 − 8Ĩ 1q1q2)

√
(Ĩ 2 + 8K2)(−Ĩ 2 + Ĩ 3 + 8K2) + 8Ĩ 1l

2
1,2

+ 1
4 sign(p3p4 − 8Ĩ 1q3q4)

√
(−Ĩ 4 + 8K2)(−Ĩ 3 + Ĩ 4 + 8K2) + 8Ĩ 1l

2
3,4.

The conservations of Ĩ 1, Ĩ 2, Ĩ 3, Ĩ 4, l1,2, l1,3, l1,4, l2,4, l3,4 give rise to those of the Hamiltonian
(21), the angular momentum (31) and the Runge–Lenz vector (33).

2.4. Holt system as Stäckel system

The Holt system is a class of completely integrable two-dimensional Hamiltonian systems
found by Holt [12]. Let us consider the Holt system on ME having Hamiltonian (cf [25])

Hhlt-1(px, py,−Ehlt, x, y, t̃) = p2
x + p2

y + 4α2x4/3 + 9
4α2x−2/3y2 + 2βx−2/3 − 2Ehlt, (35)

where α, β and Ehlt are arbitrary the constants. We choose the constant Ehlt as

Hhlt-1(px, py,−Ehlt, x, y, t̃) ≡ 0. (36)

Here, the time variable of the Holt system is t̃ . The extended Hamiltonian (35) is transformed
into that of a Stäckel system

Hhlt-2(p1, p2,−Ehlt, q1, q2, t̃ ) = p2
1 + p2

2 + U(q1) + U(q2)

q1 + q2
, (37)

where

U(qj ) = 4α2q3
j − 2Ehltqj + 2β, j = 1, 2, (38)

after the canonical transformation

q1 = x2/3 − 1

2
√

3α
py, q2 = x2/3 +

1

2
√

3α
py,

p1 = −pxx
1/3 +

3

2
αy, p2 = −pxx

1/3 − 3

2
αy.

(39)
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The dynamical system with the Hamiltonian (37) is a Stäckel system and has two constants of
motion Ĩk given by(

Ĩ1

Ĩ2

)
= (̃

S−1
hlt

)�
(

p2
1 + U(q1)

p2
2 + U(q2)

)
,

Ĩ1 = Hhlt-2(p1, p2,−Ehlt, q1, q2, t̃),

Ĩ2 = q2

q1 + q2

(
p2

1 + U(q1)
) − q1

q1 + q2

(
p2

2 + U(q2)
)
.

(40)

The Stäckel matrix is

S̃hlt =
(

q1 q2

1 −1

)
. (41)

The zero Hamiltonian condition (36) gives

Hhlt-2(p1, p2,−Ehlt, q1, q2, t̃ ) ≡ 0. (42)

Let us consider another Stäckel system with the Hamiltonian

Ha-osc(p1, p2,−Es, q1, q2, t) = 1

2

(
p2

1 + p2
2 + U(q1) + U(q2)

)
,

Ea-osc = q1 + q2

2
Ehlt,

(43)

where the potentials U(qj ) are the same as in (38). The Hamiltonian (43) describes a two-
dimensional aharmonic oscillator. Let us choose the arbitrary parameter β as

Ha-osc(p1, p2,−Ea-osc, q1, q2, t) ≡ 0. (44)

This system has the time variable t and two constants of motion Ik defined by(
I1

I2

)
= (

S−1
hlt

)�
(

p2
1 + U(q1)

p2
2 + U(q2)

)
,

I1 = Ha-osc(p1, p2,−Ea-osc, q1, q2, t),

I2 = 1

2

(
p2

1 + U(q1)
) − 1

2

(
p2

2 + U(q2)
) (45)

with the Stäckel matrix

Shlt =
(

1 1
1 −1

)
. (46)

The Holt system (37) and the Stäckel system with the Hamiltonian (43) have a common
set of potentials U(q1), U(q2) and correspond to the Stäckel matrices which are different by
the first row. The following relationship can be found by using proposition 2:

I1 = Ha-osc(p1, p2,−Es, q1, q2, t)

�→ Ĩ1 = Hhlt-2(p1, p2,−Ehlt, q1, q2, t̃) = I1

vhlt(q1, q2)
,

dt �→ d̃t = vhlt(q1, q2) dt,

vhlt(q1, q2) = q1 + q2

2
.

(47)

We see that condition (44) is equivalent to (36) through (42).
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2.5. Integrable Henon–Heiles system as Stäckel system

The Henon–Heiles-type system is originally known as a chaotic Hamiltonian system in celestial
mechanics [9]. By a simple change of the Hamiltonian we obtain a completely integrable
Henon–Heiles-type system. One of such cases (cf [25]) has the extended Hamiltonian

Hhh-1(px, py,−Ehh, x, y, t) = p2
x + p2

y + x2 + y2 + 2
3x3 + 2xy2 − Ehh (48)

on ME . Let us set the arbitrary constant Ehh as

Hhh-1(px, py,−Ehh, x, y, t) ≡ 0. (49)

If the coefficient of x3 is changed to −2/3, (48) becomes the extended Hamiltonian of the
original non-integrable Henon–Heiles system. Since the Hamiltonian Hhh-1 is already regular,
we write the time variable as t. A separation of variables is performed by using the linear
canonical transformation on M:

q1 = 1
2 (x + y), q2 = 1

2 (x − y), p1 = px + py, p2 = px − py. (50)

The extended Hamiltonian (48) leads to

Hhh-2(p1, p2,−Ehh, q1, q2, t) = 1
2

(
p2

1 + p2
2 + U(q1) + U(q2)

)
, (51)

where the potential functions are

U(qj ) = 16
3 q3

j + 4q2
j − Ehh, j = 1, 2. (52)

Hamiltonian Hhh-2 means a sequence of one-dimensional Hamiltonian systems. Condition
(49) implies

Hhh-2(p1, p2,−Ehh, q1, q2, t) ≡ 0. (53)

The dynamical system with the extended Hamiltonian (51) is a Stäckel system and has two
constants of motion Ik given by(

I1

I2

)
= (

S−1
hh

)�
(

p2
1 + U(q1)

p2
2 + U(q2)

)
,

I1 = Hhh-2(p1, p2,−Ehh, q1, q2, t),

I2 = 1

2

(
p2

1 − p2
2 + U(q1) − U(q2)

) (54)

with the Stäckel matrix

Shh =
(

1 1
1 −1

)
. (55)

3. Main theorem and new numerical integrator

As is shown in sections 2.1 and 2.2, a Hamiltonian H̃ (p1, . . . , pN, q1, . . . , qN) of Stäckel
system comes from a Hamiltonian

H(p1, . . . , pN, q1, . . . , qN) =
N∑

k=1

ck,1
(
p2

k + Uk(qk)
)
, ck,1 = gk(q1, . . . , qN)

through an extended canonical transformation (14). From (4) the Stäckel system with
H(p1, . . . , pN, q1, . . . , qN) has the following N zero-valued constants denoted by

Hj (pj , qj ) = p2
j + Fj (qj ), j = 1, . . . , N, (56)
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where Fj (qj ) = Uj(qj ) − ∑N
k=1 sk,j (qj )Ik, j = 1, . . . , N . By using (5), the extended

HamiltonianH(p1, . . . , pN,−I1, q1, . . . , qN , t) corresponding to H(p1, . . . , pN, q1, . . . , qN)

is expressed as

H(p1, . . . , pN,−I1, q1, . . . , qN , t) =
N∑

j=1

gj (q1, . . . , qN)Hj (pj , qj ). (57)

From (6) the Hamiltonian system with the Hamiltonian H(p1, . . . , pN, q1, . . . , qN) leads to

dpj

dt
= −gj (q1, . . . , qN)

∂Hj (pj , qj )

∂qj

,

dqj

dt
= gj (q1, . . . , qN)

∂Hj (pj , qj )

∂pj

, j = 1, . . . , N.

(58)

It is clear that the Hamiltonian system (58) conserves the values of H1(p1, q1), . . . ,

HN(pN, qN). The conservation of I1, . . . , IN is induced by that of H1(p1, q1), . . . ,

HN(pN, qN). If we apply an energy-preserving method to the Hamiltonian system (58),
H1(p1, q1), . . . ,HN(pN, qN) are conserved, consequently, all constants of motion I1, . . . , IN

are also kept constant under a discrete-time evolution of the energy-preserving scheme.
From proposition 2, the Stäckel system with the Stäckel matrix S̃ distinguished from S by

the first row only satisfies the following relation:

S̃

 Ĩ1

...

ĨN

 =

 p2
1 + U1(q1)

...

p2
N + UN(qN)

 , (59)

where Ĩ1, . . . , ĨN are the constants of motion. By (4) and (59),

S

I1

...

IN

 = S̃


Ĩ1

...

ĨN

 (60)

is derived. From (56) and (60), the N zero-valued constants H1, . . . ,HN are rewritten as

Hj (pj , qj ) = p2
j + F̃ j (qj ), j = 1, . . . , N, (61)

where F̃j (qj ) = Uj(qj ) − ∑N
k=1 s̃k,j (qj )̃Ik, j = 1, . . . , N . As the Hamiltonian system (58)

keeps the values of H1, . . . ,HN zeros, those of Ĩ1, . . . , ĨN are conserved.
Now we are in a position to state the main theorem.

Theorem 2. Let H̃(p1, . . . , pN,−Ĩ1, q1, . . . , qN , t̃) and H(p1, . . . , pN,−I1, q1, . . . , qN , t)

be an extended Hamiltonian of a given Stäckel system and its dual Hamiltonian
related by the extended canonical transformation (14), respectively. Assume that
H(p1, . . . , pN,−I1, q1, . . . , qN , t) is expressed as a sum of Hamiltonians of one degree of
freedom such that

H(p1, . . . , pN,−I1, q1, . . . , qN , t) =
N∑

k=1

ck,1Hk(pk, qk), Hk(pk, qk) = p2
k + Fk(qk),

(62)

where each Fk(qk) is a regular function of qk and each ck,1 = gk(q1, . . . , qN) is
a constant. Then, an energy-preserving scheme for the Hamiltonian system (58)
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induces a numerical integrator for the Hamiltonian system with the extended Hamiltonian
H̃(p1, . . . , pN,−Ĩ1, q1, . . . , qN , t̃) which conserves N constants of motion Ĩ1, . . . , ĨN .

The Kepler motion (21), the Holt system (37) and the Henon–Heiles system (51) belong
to a special but important class, where Uk(qk) = U(qk) and ck,1 are some nonzero constants
for k = 1, 2, . . . , N .

We next explain how to present a new numerical integrator for Stäckel system. The new
numerical integrator keeps exactly the same number of constants of motion as the degree of
freedom which a Stäckel system has. These constants of motion fix a single orbit of a Stäckel
system on a phase space.

In order to simulate a perturbed Kepler system, the adaptive Verlet method [19] was
introduced in which the Hamiltonian of the system is split into the Kepler part and the
perturbation. This method does not accurately simulate the perturbed Kepler motion because
an adopted numerical integrator does not compute even the behaviour of the Kepler part
accurately. An accurate numerical integrator for completely integrable system is necessary so
that the behaviour of a perturbed Hamiltonian system is investigated accurately. Hence, even
an completely integrable system needs an accurate numerical integrator.

The algorithm for numerical integration of Stäckel system is described as follows:

(0) Introduce a Hamiltonian on an extended phase space ME . Fix the value of an arbitrary
constant in the extended Hamiltonian which corresponds to energy level by the zero
Hamiltonian condition.

(i) Find a canonical transformation on M such that the extended Hamiltonian is transformed
into that of a Stäckel system.

(ii) If the Hamiltonian of the Stäckel system in (i) is not regular at some point of phase space,
this system can be transformed to another Stäckel system whose Hamiltonian is regular
in the whole phase space by the inverse of an extended canonical transformation on ME .
Simultaneously, the time variable t̃ is changed to a fictitious time t. Find such an extended
canonical transformation. Then the canonical variables of the Hamiltonian are separated.
If the Hamiltonian of the Stäckel system in (i) is regular in the whole phase space and
separated without using any canonical transformation, then go to (iii).

(iii) Discretize the Hamiltonian system with a regular Hamiltonian, which is the sum of
one-dimensional Hamiltonian systems, by a variant of the energy-preserving methods.

(iv) Derive a discrete-time dynamical system from that given in (iii) by using a discrete
counterpart of the extended canonical transformations of (ii).

(v) A new numerical integrator is obtained from the discrete-time dynamical system in (iv)
after the inverse of the canonical transformation in (i).

The resulting numerical integrator remarkably conserves the same number of constants
of motion as the degree of freedom of the original dynamical system. Our new numerical
integrator has its base not only on the regularization theory but also on separation of variables
for Stäckel system. This fundamental property is not perceived well in the previous works
[22, 23]. Note that the Levi-Civita transformation used in [22] and the KS transformation
in [23] are examples of the canonical transformation in (i). The transformation in (ii) is
the inverse of the extended canonical transformations (14) given by proposition 2. The time
variable is changed in general after the extended canonical transformation in (iv). Therefore,
a discrete-time system having variable time step-size naturally appears. In the next section,
we apply the new numerical integration algorithm to the Kepler motion, the Holt system and
the integrable Henon–Heiles system concretely.
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In this paper, we adopt Greenspan’s energy-preserving method [4, 5] with a variable
step-size

P
(j+1)

k − P
(j)

k

s(j+1) − s(j)
= −ck,1

Fk

(
Q

(j+1)

k

) − Fk

(
Q

(j)

k

)
Q

(j+1)

k − Q
(j)

k

,

Q
(j+1)

k − Q
(j)

k

s(j+1) − s(j)
= ck,1

(
P

(j+1)

k + P
(j)

k

) (63)

for (58). Here, s(j) is a discrete-time variable which is given as an arbitrarily increasing
sequence and corresponds to the continuous-time variable t. The variables P

(j)

k ,Q
(j)

k

correspond to pk, qk and are the values of Pk,Qk at the time s(j) such that

P
(0)
k = pk(0), Q

(0)
k = qk(0). (64)

As the system (63) keeps the values of H1
(
P

(j)

1 ,Q
(j)

1

)
, . . . ,HN

(
P

(j)

N ,Q
(j)

N

)
zeros, it has N

constants of motion Ĩ 1
(
P

(j)

1 ,Q
(j)

1

)
, . . . , Ĩ N

(
P

(j)

N ,Q
(j)

N

)
. Since the integrable Henon–Heiles

system can be transformed to a regular and Stäckel system directly by a single canonical
transformation, steps (ii) and (iv) can be omitted to present a numerical integrator for the
Henon–Heiles system. The zero Hamiltonian conditions are useful not only to find the duality
of two Stäckel systems but also to determine orbits of the resulting discrete-time integrable
systems by using given initial data, where each orbit is distinguished by the value of the
constant in (0).

Remark 1. If we adopt the symplectic scheme (cf [8, 26]) in step (iii), the resulting integrator
does not conserve all the constants of motion anymore. In order to draw an orbit, for example,
an orbit near a critical point such as a separatrix, we need an exactly conserving integrator.

4. Discrete-time systems derived from Stäckel systems

In this section, we derive new discretizations of three completely integrable systems discussed
in section 2. The Roman numbers (0), (i) , . . . , (v) mean the steps of the new numerical
integration algorithm.

4.1. Discrete Kepler motion

4.1.1. Numerical integrator for three-dimensional Kepler motion.

(0) The constant Ekepl in the extended Hamiltonian Hkepl-1 is fixed by the zero Hamiltonian
condition (7).

(i) The Hamiltonian (20) leads to the Hamiltonian Hkepl-2 in (21) after the KS canonical
transformation (19). The Hamiltonian system corresponding to the Hamiltonian (21) is

dqk

d̃t
= 1

4

pk

q2
1 + q2

2 + q2
3 + q2

4

,

dpk

d̃t
= 1

4

(
p2

1 + p2
2 + p2

3 + p2
4

) − 8K2(
q2

1 + q2
2 + q2

3 + q2
4

)2 qk, k = 1, . . . , 4,

(65)

where t̃ is the time variable. This is a Stäckel system.
(ii) The Stäckel system given in (i) has the Stäckel matrix (24). The Hamiltonian of this

system is not regular at the origin q1 = q2 = q3 = q4 = 0. It follows from proposition 2
that this Stäckel system leads to the four-dimensional harmonic oscillator with the time
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variable t. The resulting Hamiltonian Hosc in (25) is regular in the whole phase space.
The Hamiltonian system of the four-dimensional oscillator is

dqk

dt
= 1

4
pk,

dpk

dt
= 2Ekeplqk, k = 1, . . . , 4, (66)

where we use Hkepl-2 ≡ 0 for Ekepl. This system is corresponding to the Stäckel matrix
(28). The four-dimensional oscillator and the Hamiltonian system (65) are directly related
by the extended canonical transformation (29).

(iii) The Hamiltonian system of the four-dimensional oscillator (25) is discretized by the
energy-preserving method with a variable step-size (cf [4, 5, 10]) as follows:

Q
(j+1)

k − Q
(j)

k

s(j+1) − s(j)
= P

(j)

k + P
(j+1)

k

8
,

P
(j+1)

k − P
(j)

k

s(j+1) − s(j)
= Ekepl

(
Q

(j)

k + Q
(j+1)

k

)
,

P
(0)
k = pk(0), Q

(0)
k = qk(0), k = 1, . . . , 4.

(67)

On the orbit of the discrete-time four-dimensional harmonic oscillator (67), the
Hamiltonian Hosc in (25) takes a constant value for any s(j), namely,

Hosc
(
P

(j+1)

1 , P
(j+1)

2 , P
(j+1)

3 , P
(j+1)

4 ,−Eosc,Q
(j+1)

1 ,Q
(j+1)

2 ,Q
(j+1)

3 ,Q
(j+1)

4 , s(j+1)
)

= Hosc(P
(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,−Eosc,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4 , s(j)),

j = 0, 1, . . . . (68)

It follows from (26) that Hosc = 0 at t = 0. Thus, we see

Hosc
(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,−Eosc,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4 , t (j)
) ≡ 0, j = 0, 1, . . . .

(69)

From (64) and (25) we can get the expression of the constant Ekepl as follows:

Ekepl = 1

8

(
P

(0)
1

)2
+

(
P

(0)
2

)2
+

(
P

(0)
3

)2
+

(
P

(0)
4

)2 − 8K2(
Q

(0)
1

)2
+

(
Q

(0)
2

)2
+

(
Q

(0)
3

)2
+

(
Q

(0)
4

)2 . (70)

(iv) We introduce a new discrete-time variable s̃(j), j = 0, 1, . . . , defined by

s̃(j+1) − s̃(j) = 2
((

Q
(j)

1

)2
+

(
Q

(j)

2

)2
+

(
Q

(j)

3

)2
+

(
Q

(j)

4

)2)
(s(j+1) − s(j)), (71)

where (71) is a discrete analogue to the Kepler change of the time (29). By using (71),
we see that the discrete-time four-dimensional oscillator (67) is transformed into

Q
(j+1)

k − Q
(j)

k

s̃(j+1) − s̃(j)
= 1

16

P
(j)

k + P
(j+1)

k(
Q

(j)

1

)2
+

(
Q

(j)

2

)2
+

(
Q

(j)

3

)2
+

(
Q

(j)

4

)2 ,

P
(j+1)

k − P
(j)

k

s̃(j+1) − s̃(j)
= 1

2

Ekepl
(
Q

(j)

k + Q
(j+1)

k

)(
Q

(j)

1

)2
+

(
Q

(j)

2

)2
+

(
Q

(j)

3

)2
+

(
Q

(j)

4

)2 ,

k = 1, . . . , 4, j = 0, 1, . . . .

(72)

Moreover, (71) gives a discrete analogue of the extended canonical transformation (29):

Hosc
(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,−Eosc,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4 , s(j)
)

�→ Hkepl-2
(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,−Ekepl,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4 , s̃(j)
)

= Hosc
(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,−Eosc,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4 , s̃(j)
)

vkepl
(
Q

(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4

) ,

s(j+1) − s(j) �→ s̃(j+1) − s̃(j) = vkepl
(
Q

(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4

)
(s(j+1) − s(j)), (73)
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where

vkepl
(
Q

(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4

) = 2
((

Q
(j)

1

)2
+

(
Q

(j)

2

)2
+

(
Q

(j)

3

)2
+

(
Q

(j)

4

)2)
. (74)

Equations (72) keep the values of Ĩ 1
(
P

(j)

1 ,Q
(j)

1

)
, . . . , Ĩ 4

(
P

(j)

4 ,Q
(j)

4

)
in (23). We name

(72) the shape three-dimensional discrete Kepler motion.
(v) By using the KS canonical transformation (19), we see that the discrete Kepler motion

(72) can be rewritten explicitly by using the variables in the XYZ-space:

P
(j)

X , P
(j)

Y , P
(j)

Z ,X(j), Y (j), Z(j), P
(j+1)

X , P
(j+1)

Y , P
(j+1)

Z ,X(j+1), Y (j+1), Z(j+1).

However, the resulting equations look too complicated to write.

Remark 2. The discrete Kepler motion (72) with (70) presents an explicit scheme with a
variable step-size for a numerical integration of the three-dimensional Kepler motion.

Remark 3. Introduce a new discrete-time variable s̃(j), j = 0, 1, . . . , defined by

s̃(j+1) − s̃(j) = 1
2

((
Q

(j)

1 + Q
(j+1)

1

)2
+

(
Q

(j)

2 + Q
(j+1)

2

)2
+

(
Q

(j)

3 + Q
(j+1)

3

)2

+
(
Q

(j)

4 + Q
(j+1)

4

)2) × (s(j+1) − s(j)), (75)

in (iv) instead of (71). Then, the resulting discrete-time four-dimensional oscillator has a time-
reversibility. The change of the time (75) itself is the same as in Leimkuhler [19]. Though
the time-reversible integrator found in [11, 19] also conserves all constants of motion, it is an
implicit scheme and costs more time than an explicit integrator in general.

4.1.2. Properties of discrete Kepler motion. As was shown in (iv), Hkepl-2 is constant under
the time evolution of (72). Though the conservation of the Runge–Lenz vector under the time
evolution of (72) is checked by a direct calculation in [23], the reason is not explained well.
We here show that the conservation of the quantities Ĩ k and li,j gives rise to the conservation
of the Runge–Lenz. This fact is revealed by representing the Kepler motion in Stäckel form.

Proposition 3. The discrete Kepler motion (72) is an explicit scheme with a variable step-size
and has three constants of motion defined as follows:

(a) A discrete analogue of the Hamiltonian

Hd-kepl
(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4

)
= Hkepl-2

(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,−Ekepl,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4 , s̃(j)
)
. (76)

(b) A discrete analogue of the angular momentum

hd-kepl
(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4

)
= hkepl

(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4

)
, (77)

where the definition of hkepl is in (31).
(c) A discrete analogue of the Runge–Lenz vector

ed-kepl
(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4

)
= ekepl

(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4

)
, (78)

where the definition of ekepl is in (33).
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Proof.

(a) It is clear that Hkepl-2
(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,−Ekepl,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4 , s̃(j)
)

is
conserved by the new numerical integrator (see (iv)). By using definition (76), we
see that

Hd-kepl
(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4

) ≡ 0, j = 0, 1, . . . .

(b) It is easy to check the conservation of li,j , i, j = 1, . . . , 4 (32), by (72). Because of
this conservation, it is clear that hd-kepl

(
P

(j)

1 , P
(j)

2 , P
(j)

3 , P
(j)

4 ,Q
(j)

1 ,Q
(j)

2 ,Q
(j)

3 ,Q
(j)

4

)
is

conserved.
(c) As shown in (34), the Runge–Lenz vector (78) is the function of quantities Ĩ 1

(
P

(j)

1 ,Q
(j)

1

)
,

Ĩ 2
(
P

(j)

2 ,Q
(j)

2

)
, Ĩ 3

(
P

(j)

3 ,Q
(j)

3

)
, Ĩ 4

(
P

(j)

4 ,Q
(j)

4

)
and l1,2

(
P

(j)

1 , P
(j)

2 ,Q
(j)

1 ,Q
(j)

2

)
, l1,3

(
P

(j)

1 ,

P
(j)

3 ,Q
(j)

1 ,Q
(j)

3

)
, l1,4

(
P

(j)

1 , P
(j)

4 ,Q
(j)

1 ,Q
(j)

4

)
, l2,4

(
P

(j)

2 , P
(j)

4 ,Q
(j)

2 ,Q
(j)

4

)
, l3,4

(
P

(j)

3 , P
(j)

4 ,

Q
(j)

3 ,Q
(j)

4

)
. Each quantity is conserved by the discrete Kepler motion (72). Consequently,

the Runge–Lenz vector (78) should be conserved. �

Hence, the discrete Kepler motion (72) exactly conserves all of the constants of motion of
the continuous-time three-dimensional Kepler motion, especially, the Runge–Lenz vector. As
is explained in the introduction, this property is somewhat different from the known numerical
integration schemes of the Kepler motion, for example, a symplectic scheme [34, 35], an
explicit variable step-size scheme [11]. We have already shown that the three-dimensional
discrete Kepler motion (72) is numerically stable for any step-size in [23]. Since the Kepler
motion has more constants of motion than the degree of freedom, it is an example of a super-
integrable system. In the Kepler case, the new integrator conserves more constants of motion
than degree of freedom.

4.1.3. Numerical example for discrete Kepler motion. Figure 1 gives a numerical example
for the three-dimensional discrete Kepler motion (72) with K = 1 and the same discrete
step-size s(j+1) − s(j) = δ. The symbol (×) indicates the orbit with δ = 1. The line describes
the orbit with δ = 0.1. The common initial value is X(0) = 0.4, Y (0) = −0.1, Z(0) =
0.2, P

(0)
X = 0.2, P

(0)
Y = −0.1, and the positive constant P

(0)
Z is determined from the given

Ekepl, X
(0), . . . , P

(0)
Y through

Hkepl-1
(
P

(0)
X , P

(0)
Y , P

(0)
Z ,−Ekepl, X

(0), Y (0), Z(0), 0
) = 0.

In figure 1, the orbit corresponding to Ekepl = −0.2 traces the ellipse, the orbit of the
continuous-time Kepler motion, for rather big discrete step-size. See [23] for comparisons
with other numerical integrators.

4.2. Discrete Holt system

4.2.1. Numerical integrator for Holt system.

(0) The constant Ehlt in the extended Hamiltonian Hhlt-1 is fixed by the zero Hamiltonian
condition (36).

(i) The Hamiltonian (35) leads to the Hamiltonian (37) after the canonical transformation
(39). The Hamiltonian system corresponding to (37) is

dqk

d̃t
= 2pk

q1 + q2
,

dpk

d̃t
= 2Ehlt − 12α2q2

k

q1 + q2
, k = 1, 2, (79)

where t̃ is the time variable. This is a Stäckel system.
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Figure 1. Three-dimensional discrete Kepler motion δ = 0.1, 1.

(ii) The Stäckel system given in (i) is corresponding to the Stäckel matrix (41). The
Hamiltonian (37) is not regular along the line q1 + q2 = 0. From proposition 2,
the Stäckel system (79) leads to the system corresponding to the Hamiltonian
Ha-osc(p1, p2,−Es, q1, q2, s

(j)) in (43). Here t is the time variable. The Hamiltonian
Ha-osc is regular in the whole space. The resulting Hamiltonian system is an aharmonic
oscillator:

dqk

dt
= pk,

dpk

dt
= Ehlt − 6α2q2

k , k = 1, 2. (80)

This system has the Stäckel matrix (46). The relationship between the Holt system and
the Hamiltonian system (80) is expressed with (47).

(iii) The Hamiltonian system (79) is discretized by the energy-preserving method
(cf [4, 5, 10]) as follows:

Q
(j+1)

k − Q
(j)

k

s(j+1) − s(j)
= P

(j)

k + P
(j+1)

k

2
,

P
(j+1)

k − P
(j)

k

s(j+1) − s(j)
= Ehlt − 2α2

((
Q

(j+1)

k

)2
+

(
Q

(j+1)

k

)(
Q

(j)

k

)
+

(
Q

(j)

k

)2)
,

s(0) < · · · < s(j−1) < s(j) < s(j+1) < · · · , k = 1, 2.

(81)

Here, s(j) is a discrete-time variable and P
(j)

k ,Q
(j)

k are the discrete variables such that
P

(0)
k = pk(0),Q

(0)
k = qk(0), respectively. On the orbit of the discrete-time system (81),

the Hamiltonian (43) takes a constant value for any s(j), namely,

Ha-osc
(
P

(j+1)

1 , P
(j+1)

2 ,−Es,Q
(j+1)

1 ,Q
(j+1)

2 , s(j+1)
)

= Ha-osc
(
P

(j)

1 , P
(j)

2 ,−Es,Q
(j)

1 ,Q
(j)

2 , s(j)
)
, j = 0, 1, . . . . (82)

Condition (44) implies Ha-osc
(
P

(j)

1 , P
(j)

2 ,−Es,Q
(j)

1 ,Q
(j)

2 , s(j)
) ≡ 0. From (82) we can

get the value of the constant Ehlt as follows:

Ehlt =
(
P

(0)
1

)2
+

(
P

(0)
2

)2
+ 4α2

((
Q

(0)
1

)3
+

(
Q

(0)
2

)3)
2
(
Q

(0)
1 + Q

(0)
2

) . (83)

(iv) We introduce a new discrete-time variable s̃(j), j = 0, 1, . . . , defined by

s̃(j+1) − s̃(j) = Q
(j)

1 + Q
(j)

2

2
(s(j+1) − s(j)), (84)



New numerical integrator for the Stäckel system 9471

where (84) is a discrete analogue to (47). By using (47), we see that the discrete-time
aharmonic oscillator (81) is transformed into

Q
(j+1)

k − Q
(j)

k

s̃(j+1) − s̃(j)
= P

(j+1)

k + P
(j)

k

Q
(j)

1 + Q
(j)

2

,

P
(j+1)

k − P
(j)

k

s̃(j+1) − s̃(j)
= 2Ehlt − 4α2

((
Q

(j+1)

k

)2
+ Q

(j+1)

k Q
(j)

k +
(
Q

(j)

k

)2)
Q

(j)

1 + Q
(j)

2

,

k = 1, 2. (85)

Moreover, (84) gives the correspondence

Ha-osc
(
P

(j)

1 , P
(j)

2 ,−Es,Q
(j)

1 ,Q
(j)

2 , s(j)
) �→ Hhlt-2

(
P

(j)

1 , P
(j)

2 ,−Ehlt,Q
(j)

1 ,Q
(j)

2 , s̃(j)
)

= Ha-osc
(
P

(j)

1 , P
(j)

2 ,−Ea-osc,Q
(j)

1 ,Q
(j)

2 , s(j)
)

vhlt
(
Q

(j)

1 ,Q
(j)

2

) ,

s(j+1) − s(j) �→ s̃(j+1) − s̃(j) = vhlt
(
Q

(j)

1 ,Q
(j)

2

)
(s(j+1) − s(j)), (86)

where

vhlt
(
Q

(j)

1 ,Q
(j)

2

) = Q
(j)

1 + Q
(j)

2

2
. (87)

Equations (85) keep the value of Hhlt-2
(
P

(j)

1 , P
(j)

2 ,−Ehlt,Q
(j)

1 ,Q
(j)

2 , s̃(j)
)

zero. We call
(85) the discrete Holt system.

(v) Using the inverse of the canonical transformation (39), a discrete Holt system on the
XY -plane is derived from (85).

Remark 4. Introducing a new discrete-time variable ŝ(j), j = 0, 1, . . . , defined by

s̃(j+1) − s̃(j) =
(
Q

(j)

1 + Q
(j+1)

1

)
+

(
Q

(j)

2 + Q
(j)

2

)
4

(s(j+1) − s(j)), (88)

in (iv), the derived discrete-time two-dimensional oscillator has a time-reversible variable
step-size.

4.2.2. Constants of motion of discrete Holt system. The discrete Holt system (85) has two
constants of motion as follows:

(a) A discrete analogue of the Hamiltonian:

Hd-hlt
(
P

(j)

X , P
(j)

Y , X(j), Y (j)
) = Hhlt-1

(
P

(j)

X , P
(j)

Y ,−Ehlt, X
(j), Y (j), s̃(j)

)
. (89)

(b) A discrete analogue of the constant of motion Ĩ2 in (40):

Ĩ2,d-hlt-1
(
P

(j)

X , P
(j)

Y , X(j), Y (j)
) =

(
P

(j)

X

)2
P

(j)

Y

2
√

3α
+

(
P

(j)

Y

)3

3
√

3α
− 4αP

(j)

Y (X(j))4/3

√
3

− 3αP
(j)

X (X(j))1/3Y (j) +
3
√

3α(X(j))−2/3(Y (j))2P
(j)

Y

8
+

β(X(j))−3/2P
(j)

Y√
3α

.

(90)
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Figure 2. Discrete Holt system δ = 0.01, 0.1.

We can easily prove that (81) keep Ĩ1 and Ĩ2 in (40) constant. After the inverse canonical
transformation of (39), we see that Ĩ1 and Ĩ2 lead to the right-hand sides of (89) and (90),
respectively. Since

Ĩ1 = Hhlt-2
(
P

(j)

1 , P
(j)

2 ,−Ehlt,Q
(j)

1 ,Q
(j)

2 , s̃(j)
)

= Hhlt-1
(
P

(j)

X , P
(j)

Y ,−Ehlt, X
(j), Y (j), s̃(j)

)
,

Ĩ2 = Ĩ2,d-hlt-1
(
P

(j)

X , P
(j)

Y , X(j), Y (j)
)
,

it follows that (89) and (90) are constants of motion of the discrete Holt system (85).

4.2.3. Numerical example for discrete Holt system. A numerical example for the discrete
Holt system is given in figure 2. The orbits of the discrete Holt system (85) with a constant
discrete step-size s(j+1) − s(j) = δ = 0.01, 0.1 are described, where the initial value is
X(0) = 0.5, Y (0) = 0.5, P

(0)
X = 1.0, P

(0)
Y = 1.0 and the parameters are α = 1.0 and β = 100.0.

4.3. Discrete integrable Henon–Heiles system

4.3.1. Numerical integrator for integrable Henon–Heiles system.

(0) The constant Ehh in the extended Hamiltonian Hhh-1 is fixed by the zero Hamiltonian
condition (49).

(i) The Hamiltonian (48) leads to the Hamiltonian (51) after the canonical transformation
(50). The Hamiltonian system corresponding to the Hamiltonian (51) is

dqk

dt
= pk,

dpk

dt
= −8q2

k − 4qk, k = 1, 2, (91)

where t is the time variable. This is a Stäckel system.
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(ii) The Stäckel system given in (i) has the Stäckel matrix (55). The Hamiltonian (51) is
already regular in the whole phase space and the sum of one-dimensional Hamiltonian
systems.

(iii) The Hamilton system (91) is discretized by the energy-preserving method as follows:

Q
(j+1)

k − Q
(j)

k

s(j+1) − s(j)
= P

(j)

k + P
(j+1)

k

2
,

P
(j+1)

k − P
(j)

k

s(j+1) − s(j)
= −8

((
Q

(j+1)

k

)2
+ Q

(j+1)

k Q
(j)

k +
(
Q

(j)

k

)2)
+ 6

(
Q

(j+1)

k + Q
(j)

k

)
3

,

s(0) < · · · < s(j−1) < s(j) < s(j+1) < · · · .

(92)

Here, s(j) is a discrete-time variable and P
(j)

k ,Q
(j)

k are the values of Pk,Qk at the time
s(j), where we set P

(0)
k = pk(0),Q

(0)
k = qk(0), Pk and Qk are the counterparts of the

canonical variables pk and qk , respectively. On the orbit of the discrete-time integrable
Henon–Heiles system (92), the Hamiltonian (51) takes a constant value for any s(j),
namely,

Hhh-2
(
P

(j+1)

1 , P
(j+1)

2 ,−Ehh,Q
(j+1)

1 ,Q
(j+1)

2 , s(j+1)
)

= Hhh-2
(
P

(j)

1 , P
(j)

2 ,−Ehh,Q
(j)

1 ,Q
(j)

2 , s(j)
)
, j = 0, 1, . . . . (93)

It follows from (53) with P
(0)
k = pk(0),Q

(0)
k = qk(0) that

Hhh-2
(
P

(j)

1 , P
(j)

2 ,−Ehh,Q
(j)

1 ,Q
(j)

2 , s(j)
) ≡ 0. (94)

From (93) we can get the values of the constants E1,hh and E2,hh as follows:

Ek,hh = 1
2

(
P

(0)
k

)2
+ 8

3

(
Q

(0)
k

)3
+ 2

(
Q

(0)
k

)2
, k = 1, 2, (95)

where Ehh = E1,hh + E2,hh.
(iv) Step (iv) is omitted in this case.
(v) Through the inverse of the canonical transformation (50), the discrete-time system (92) is

converted to
X(j+1) − X(j)

s(j+1) − s(j)
= P

(j+1)

X + P
(j)

X ,
Y (j+1) − Y (j)

s(j+1) − s(j)
= P

(j+1)

Y + P
(j)

Y ,

P
(j+1)

X − P
(j)

X

s(j+1) − s(j)
= −2

3
(((X(j+1))2 + X(j+1)X(j) + (X(j))2)

+ ((Y (j+1))2 + Y (j+1)Y (j) + (Y (j))2)) − (X(j+1) + X(j)),

P
(j+1)

Y − P
(j)

Y

s(j+1) − s(j)
= −2

3
(2X(j+1)Y (j+1) + 2X(j)Y (j)

+ X(j+1)Y (j) + X(j)Y (j+1)) − (Y (j+1) + Y (j)).

(96)

Equations (96) keep the value of Hhh-1
(
P

(j)

X , P
(j)

Y ,−Ehh, X1(j), Y (j), s(j)
)

zero. We call
(92) or (96) the shape discrete integrable Henon–Heiles system.

4.3.2. Constants of motion of discrete integrable Henon–Heiles system. The discrete
integrable Henon–Heiles system (96) has the following two constants of motion defined
by

(a) a discrete analogue of the Hamiltonian:

Hd-hh-1
(
P

(j)

X , P
(j)

Y , X(j), Y (j)
) = Hhh-1

(
P

(j)

X , P
(j)

Y ,−Ehh, X
(j), Y (j), s(j)

)
, (97)
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Figure 3. Discrete Henon–Heiles system δ = 0.01, 0.1.

(b) a discrete analogue of the constant of motion I2 in (54):

I2,d-hh-1
(
P

(j)

X , P
(j)

Y , X(j), Y (j)
)

= 2P
(j)

X P
(j)

Y + 4(X(j))2Y (j) + 4
3 (Y (j))3 + 4X(j)Y (j) − E1,hh + E2,hh. (98)

To prove this case, we see that (92) keep I1 and I2 in (54) constant. After the inverse canonical
transformation of (50), we see that I1 and I2 lead to the right-hand sides of (97) and (98),
respectively. Since

I1 = Hhh-2
(
P

(j)

1 , P
(j)

2 ,−Ehh,Q
(j)

1 ,Q
(j)

2 , s(j)
)

= Hhh-1
(
P

(j)

X , P
(j)

Y ,−Ehh, X
(j), Y (j), s(j)

)
,

I2 = 1
2

((
P

(j)

1

)2 − (
P

(j)

2

)2)
+ 8

3

((
Q

(j)

1

)3 − (
Q

(j)

2

)3)
+ 2

((
Q

(j)

1

)2 − (
Q

(j)

2

)2)
= I2,d-hh-1

(
P

(j)

X , P
(j)

Y , X(j), Y (j)
)
,

(97) and (98) are shown to be constants of motion of the discrete integrable Henon–Heiles
system (96).

4.3.3. Numerical example for discrete Henon–Heiles system. Finally, in this section we give
a numerical example for the discrete Henon–Heiles system. Figure 3 indicates the discrete
Henon–Heiles system (96) with the constant discrete step-size s(j+1) − s(j) = δ = 0.01, 0.1,
where the initial value is X(0) = −0.4, Y (0) = 0.0, P

(0)
X = −0.15, P

(0)
Y = 0.15. The symbol

(�) indicates the orbit with δ = 1. The line describes the orbit with δ = 0.1.

5. Conclusion

We have proposed a new numerical integrator for a class of separable Hamiltonian systems
called the Stäckel system. If the Hamiltonian of the original Stäckel system is not regular at
some point, it leads to a regular and Hamiltonian of some Stäckel system through a suitable
extended canonical transformation. We here adopt Greenspan’s energy-preserving method as
a basic numerical integration scheme. It is proved that the energy-preserving scheme induces
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a numerical integrator for Stäckel system conserving the same number of constants of motion
as the original system (theorem 2). A successive use of

(i) a special setting of arbitrary constant in the extended Hamiltonian,
(ii) a suitable canonical transformation for the Stäckel system on an extended phase space

and its inverse and
(iii) the energy-preserving method with a variable step-size

enable us to derive such an efficient numerical integrator.
We have given a new proof of the exact conservation of the constants of motion including

the Runge–Lenz vector under the discrete-time evolution of the three-dimensional discrete
Kepler motion (proposition 3). As a consequence, the pericentre of the elliptic orbit does
not move secularly. The discrete Kepler motion has orbits which exactly trace those of the
continuous-time Kepler motion, since all of the constants of motion are conserved. As a bonus,
the discrete Kepler motion gives an explicit scheme with a variable step-size, which enables
us a high-speed simulation of the Kepler motion with a sufficient accuracy. The discrete Holt
system and the discrete integrable Henon–Heiles system are also presented. The resulting
discrete-time systems have a variable step-size and keep all of the constants of motion that
the continuous-time dynamical systems have. The Henon–Heiles system having the regular
Hamiltonian needs a linear canonical transformation which performs a separation of variables.

The new numerical integrator has the following additional good properties: (1) coverage
to the whole Stäckel system, (2) a scheme with a variable step-size and (3) a scheme with
the same behaviour for large step-size. In the Kepler case, it is an explicit scheme which
conserves more constants of motion than the degree of freedom. A skilful combination of a
regularization technique and an energy-preserving method will be useful to discretize more
wide class of dynamical systems. The authors believe that the key idea of the new numerical
integrator would be valuable in many applications outside the Stäckel system, for example, to
design a better solver for various n-body problems.
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